力学5（崩壊荷重の過去問題）

1 シリーズ（3 ヒンジで朋壊（梁タイプ））

問題コード 18021

図－1 のような荷重を受ける梁において，荷重Pを増大させたとき，その梁は図－2 のよ うな崩脿メカニスムを示した。楽の崩壊荷重Puとして，正しいものは，次のうちどれか，
 ただし，梁の全㪙性モーメントをMpとする。
$\stackrel{1}{ }$

図－1

「新たに発生したヒごは3ヶ所」

$=P_{x} L \theta+P_{x} 2 L \theta+P_{x L} \theta$
（1）$\frac{M_{p}}{L}=4 P L \theta$
$2 \frac{4 \mathrm{MO}}{3 L}$
3．$\frac{2 M_{\rho}}{L}$
4．$\frac{8 \mathrm{MO}_{0}}{3 \mathrm{~L}}$
5．$\frac{4 \mathrm{Mo}}{\mathrm{L}}$

$=M p \times \theta+M p \times 2 \theta+M p \times \theta$
$=4 M_{p} \theta$
$\forall P L Q=\psi \mu_{p} Q$
$p=\frac{M p}{L}$
2 シリーズ（4 ヒンジで崩壊（ラーメンタイプ））

問題コード 28041

図－1のような鉛直荷重 100 kN ，水平荷重Pを受けるラーメンにおいて，水平荷重Pを增大させたとき，荷重 P_{u} で望性崩壊に至り，図－2 のよう な崩壊機構を示した，ロッの値を求めよ．ただし，柱，梁の全塑性モー メントMッの値をそれそれ $300 \mathrm{kN} \cdot \mathrm{m}$ ， $200 \mathrm{kN} \cdot \mathrm{m}$ とする。

図－1
（18） $\mathrm{Pu} \times 4 \theta+100 \times 5 \theta$ $=4 \mathrm{Pu} \theta+500 \theta$
（A）$\theta \times 300+2 \theta \times 200+2 \theta \times 200 \times \theta \times 300$
$=1400 \theta$

図－2

$$
4 P u \theta+500 \theta=1400 \theta
$$

$$
4 P_{4}=1400-500
$$

$$
4 P_{u}=900
$$

$$
P_{4}=225
$$

2＇シリーズ（4 ヒンジで崩壊（ラーメンタイプ，水平外力のみ））
問題コード 14041
図－1 のような水平荷重P を受けるラーメンにおいて，水平荷重P を増大させたとき，そのラーメンは，図－2のような崩溒機構を示した．ラーメンの崩壊荷重Puの値を求めよ．ただし，柱，はりの全塑性 モーメントMのの値をそれそれ $400 \mathrm{kN} \cdot \mathrm{m}, 200 \mathrm{kN} \cdot \mathrm{m}$ とし，部材に作用する軸力及びせん断力による部材の曲は耐力の低下は無視するものとする。

図－1

图－2

演習問題としてやってみよう

問題コード 20041

図－1のようなラーメンに作用する荷重Pを増大させたとき，そのラーメンは図－2のような崩壊メカニズムを示した．ラーメンの崩壊荷重 P_{U} を求めよ．
ただし，柱，梁の全塑性モーメントをそれぞれ3Mp，2Mpとする．

图－1

図－2

図－1のようなラーメンに作用する荷重Pを増大させたとき，そのラーメンは図－2のような崩堎メカニズムを示した．ラーメンの崩壌荷重 P_{u} を求めよ．
ただし，柱，梁の全筀性モーメントをそれぞれ3Mp，2Mpとする。
$=\frac{3 M p+2 M p}{2 L}+\frac{3 M p+3 M p}{2 L}$

$+3 M p+2 M p$

$5 M p+6 M p+10 M p$

2 L

$P_{4}=2_{1}+22+23$
$=\frac{21 M P}{21}$

1シリーズ（切断法 $\mathrm{EM}=0$ ）
問題コート 17051
図のような荷重を受けるトラスにおおして，上弦村ABに生じる軸方向カとし て，正しいものは，次のうちどれか，ただし，軸方向力は，引張力を「＋」，压縮力を「一」とする。

2．$-0.5 P$
3． 0
4．$+P$
5．$+3 P$

$N_{A B}=0$.

問題コード 20051

図のような荷重を受けるトラスにおいて，
 部材ABに生じる軸方向力を求めよ．
 ただし，軸方向力は，引張力を「＋」，圧縮力を「 - 」とする。

$\Sigma_{c} M=0$

$$
-P \times 2 \psi-2 P \times \psi+N A B \times \sqrt{2} \psi=0
$$

$\sqrt{2} N A B=4 P$
$N A B=\frac{4 P}{\sqrt{2}}$

$$
=\frac{4 P}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}
$$

$$
=\frac{4 \sqrt{2} P}{2}=2 \sqrt{2} P
$$

図のような水平荷重が作用するトラスにおいて，部材A～Eに生じる軸力の組合せとして，正しいものは，次のうちとれか，ただし，表中「引」は引張力，「圧」は圧縮力を示す。

II．

$$
\begin{aligned}
& \Sigma G M=0 \\
& \quad-P \times \frac{\sqrt{3}}{2} L-N D \times \frac{\sqrt{3}}{2} L=0
\end{aligned}
$$

$$
N D=\frac{-p}{4} .
$$

2 シリーズ（切断法 $\Sigma \mathrm{Y}=0$ ）
問題コード 30051 \longrightarrow 館点洁っでも少です。

図のような水平荷重P が作用するトラスにおいて，部材A及びBに生じる軸力 を求めよ．ただし，軸力は，引張力を「 + 」，圧縮力を「－」とする。

図のような荷重が作用するトラスにおいて，部材ABに生じる朝方向力を求めよ． ただし，朝方向力は，引張力を「 + 」，圧縮力を「一」とする。

$$
\sum Y=0
$$

3 シリーズ（ゼロ部材を探す）
演習問題としてやってみよう δ

$$
\begin{aligned}
& +2 P-p-\frac{N A B}{\sqrt{2}}=0 \\
& \frac{N A B}{\sqrt{2}}=+P \\
& N_{A B}=+\sqrt{2} P
\end{aligned}
$$

演習問題

3 シリーズ（ゼロ部材を探す）

問題コード 19041

図のような荷重を受けるトラスにおいて，部材ABに生じる軸方向力はいくらか，ただし，軸方向力は，引張力を「＋」，圧縮力を「－」 とする。

解説：

問題文のトラスは「対称系」であるため，反力は上図のように発生する。
C 点について考えると．

$N C E=N C A と な り . N C B=0$ とわかる。
よって，

垂直方向の「外力系の釣り合い」より
NBA＝+P （引張材）とわかる．
よって，
Nba $=+P$

解答：NBA＝$+P$

